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Conformational restriction imposed upon Ru(bpy)3
2+ crown

ether complexes by metal ion binding leads to enhanced
luminescence.

We have recently shown that conformational restriction is a
viable mechanism for transducing metal ion binding into
enhanced fluorescence emission in organic fluorophores.1
Although conformational control of internal conversion and
intersystem crossing provide the necessary enhancement upon
analyte binding, these systems suffer from such limitations as
short excitation and emission wavelengths, short lifetimes, and
susceptibility to heavy atom quenching. Herein we describe the
extension of this conformational restriction-based signaling to
Ru(II) complexes and show that these complexes have many
advantages over their organic counterparts.

The photochemistry of ruthenium polypyridyl complexes is
well-established.2 In the context of chemosensor development,
these complexes exhibit features that are well-suited to the
fabrication of practical devices. They possess large extinction
coefficients as well as excitation and emission at visible
wavelengths. Further, the excited state lifetimes are long
enough for biological applications but short enough to circum-
vent problems associated with intramolecular and environ-
mental quenching. Perhaps most attractive, from a synthetic
point of view, is a modular design which allows tuning of
ground and excited state properties by variation of ligand(s) and
coordination geometry.3

It might initially appear that the bipyridyl ligands in
Ru(bpy)3

2+ derivatives are not candidates for external con-
formational control owing to the rigid, pseudo-octahedral
geometry about Ru(II). However, even small out-of-plane
ligand distortions have been shown to have profound effects on
both the photophysical and electrochemical properties of these
complexes.4 In particular, steric repulsion between substituents
at the 3,3A-positions of a bipyridyl ligand produces a species that
is much less emissive than the parent Ru(bpy)3

2+. This reduced
emission has been ascribed, at least in part, to distortion of the
substituted bipyridyl.5,6

A series of Ru(bpy)3
2+-based complexes with crown ether

modified bipyridyl ligands was prepared, 1–4 (Fig. 1). These
compounds were chosen for our initial study based on synthetic
accessibility and homology to our previous work. The requisite
bipyridine derivatives were prepared from 3,3A-dimethylol-2,2A-
bipyridine by modification of literature procedures.5,7 These
compounds were converted to their corresponding ruthenium(II)
complexes 1–3 by reaction with cis-dichlorobis(2,2A-bipy-
ridine)ruthenium(II) and subsequent precipitation as hexa-

fluorophosphate salts.8 Compound 4 was prepared from
ruthenium(III) trichloride hydrate and was also isolated as the
hexafluorophosphate salt.9 Complex 4 serves as an extreme
case of distortion from pseudo-octahedral geometry and was,
therefore, expected to show a more dramatic response to metal
ions.

Quantum yields for 1–3 were measured using Ru(bpy)3
2+ as

the standard (assumed 6.2% efficiency in CH3CN).2,5 They
ranged from 0.9% to 1.3% in air, and from 1.3% to 1.6% in
argon. This illustrates the impact of distortion from Oh
geometry even in these minimally substituted cases.6,9,10

Complex 4 exhibited no detectable emission at room tem-
perature. Since a low baseline signal is desirable for sensing
purposes, these complexes were well suited to evaluate the
effect of conformational perturbations induced by metal ion
binding.

Emissive response to the addition of metal ion was deter-
mined with solutions of 1–4 in CH3CN. While 1 and 4 gave no
response to metal addition, 2 and 3 exhibited significant
( ≈ 4-fold) increases in emission in the presence of Ca2+ and
Pb2+ (Fig. 2). Complex 2 also responded to added Na+ and 3 to
Mg2+, although these responses were smaller in magnitude and
required much higher concentrations of added metal ion (Fig.
3).11–13 At submillimolar concentrations of metal ion, 3
selectively signaled Ca2+ and Pb2+ in the presence of other
analytes. Concomitant with significant increases in quantum
yields, 15–20 nm bathochromic shifts were observed upon
complexation.

Fig. 1 Ru(bpy)3
2+-crown ether conjugates.

Fig. 2 Response of emission from 3 to added Pb(II).

Fig. 3 Emission enhancement of 3 as a function of [metal].
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The observed enhancement induced by Pb2+ is noteworthy.
One of the confines of organic fluorophores is that their
fluorescence is typically quenched by heavy atoms. The
coordination compounds described here appear to be free of this
limitation, and this holds promise for the development of
chemosensors for environmentally-relevant heavy metals.14

Although we do not yet have a definitive interpretation of the
origins of the luminescence enhancement or red-shifts, we have
several working hypotheses: (i) an increase in the energy of the
metal eg orbital manifold, (ii) a lowering of the 3MLCT state, or
(iii) an increase in the ground state energy of the complex. Little
change is seen in the absorption spectra of 2 or 3 upon addition
of metal ions, arguing against (iii).

Our attention is currently focused on the energetic separation
between the 3MLCT and d–d state. After photoexcitation, the
initially populated 1MLCT state decays efficiently and rapidly
to the luminescent 3MLCT.4 However, a thermally activated
transition to the metal-centered ligand field (LF) state is capable
of depopulating the 3MLCT. Promotion to this state leads to
radiationless deactivation through ISC or photodecomposition.
Therefore maximum emission is expected when the energy of
the LF state lies well above that of the 3MLCT, and increases in
this energy separation should lead to enhanced emission.2,15 A
slight binding-induced lowering of the 3MLCT band would
explain both the enhanced emission and bathochromic shifts
seen in the presence of certain metal ions. However, because the
energy gap law precludes any large deviations in this direction
without compromise of quantum efficiency,16 we believe that
binding-induced elevation of the energy of the ligand field state
plays a more important role in the present case.

It is our contention that these energetics are influenced by the
conformation of the crown ether-bipyridyl ligands which is, in
turn, altered by the presence of a bound metal ion. Photo-
physical effects due to conformational restriction have now
been observed for transition metal complexes as well as for
organic fluorophores. This underscores the general importance
of conformational effects in excited-state partitioning between
radiative and non-radiative decay processes. Further measure-
ments are in progress to determine the accessibility of the d–d
state in the presence and absence of metals showing significant
responses in our study.17 These experiments are expected to
provide a more detailed understanding of the nature of
conformational control of photophysical parameters.
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